
Guide to Building Objects for the BVE Simulator

By BVE Italia fans (http://bve.altervista.org)
English release 1.11 - September 2004 - revised by John Whipp (jrhwhipp@tesco.net)

from previous rel 1.1- Aug 2003 - by Luigi Cartello (cartello.luigi@tiscali.it)
Note The present guide is mainly derived from information taken on the site of Mr. Mackoy (http://mackoy.cool.ne.jp/), author of BVE, as well from my personal experiences and from information found around the world on various internet sites. Between them I want to cite in a special way and in the order I discovered them:
TRAINSIM UK by Vern Moorhouse: http://www.trainsim.org.uk/
CroTrainz by Branco Spoljaric, the mythical Barney: http://www.crotrainz.com/
BVE Helper by Brett Williams: http://members.aol.com/bvehelper/
Train Sim Central by Steve Green: http://www.trainsimcentral.co.uk/
BVE Works by Alfred Barten: http://alfredbarten.com/
BVE Fan by Paul Woozley: http://bve_fan.tripod.com/bvefan/
BVE by Robert Marrero: http://rmmarrero.topcities.com/bve/index.html
Unofficial BVE Structure tutorial by Mr. Matsumura: http://www.hi-net.zaq.ne.jp/seiun/bvetut/
I also want to cite what I define the Forum of the International Community of BVE for excellence, namely The BVE forum of CroTrainz (http://www.crotrainz.com/cgibin/forum/board.pl?az=list&forum=DCForumID4), on which some interventions of BVE sceneries authors like Anthony Bowden and Robert Glass, only to cite two, were fundamental to the understanding of some features not otherwise documented for this fascinating simulator.

Special thanks are for the following persons:

Jason Dultz (etjason on TrainSim forum) etjason@aol.com for his big help and encouragement to translate the guide to English.
John Whipp (JohnWhipp on TrainSim forum) jrhwhipp@tesco.net (please prefix the subject line with BVE) for his revision using a more pleasant English and doing some corrections and additions.
Giving special thanks to the cited persons, excuse me for having omitted tens of other names, that equally have in some way contributed useful information to the accomplishment of this guide.

Sorry for my poor English, and thanks in advance to those of you that will spot and let me know of any mistake present in the document, that I’ll go to correct in later versions.

Examples: During the reading you will meet some examples of objects that are indispensable to understanding the text. Right away I want to excuse myself with the authors of these original objects that I have not been able to cite. I’ve noticed that some objects have been used, also with small variations, from different authors of sceneries and often without any reference to the name of the original author. Images used in the examples are at low definition in order to save space: I hope however that they are clear enough to be understood. Every illustrated example is also present, like the BVE object file and BMP image in the file zipped distribution file (folder Examples).

My advice is to first read all of the guide. The pages from 4 to 8 (for the B3D format) and from 11 to 17 (for CSV format) could then be used as reference to the syntax and the meaning of the various instructions of the BVE object language.

I’ve chosen to give more space to the CSV format, because it provides some more powerful instructions that can "simplify life". This doesn’t mean that any object cannot be created in both the formats.

In the version 1.1, other than the correction of some mistakes, the description of CSV objects has been reorganized and 2 other examples have been added to show the application of textures to objects created using the Cube and Cylinder statements (objects Torre1.csv and SerbAcqua.CSV).
Table of Contents

	Introduction

Structure Viewer

Objects in B3D format

Example of B3D object (House with tree)

Objects in CSV format

Example of CSV object (FS Pole)

Example of CSV object (Bench)
Example of CSV object (Telephone Booth)
Example of CSV object (Fence in Cement)

Example of CSV object (Tower in bricks)

Example of CSV object (Tank for water)
	Page 2

Page 3

Page 4

Page 9

Page 11

Page 20

Page 23

Page 25

Page 27

Page 28

Page 30

Introduction

This guide is addressed to both those who want to undertake the development of add-ons for BVE, and those who want simply to understand how the scenery visible in the simulator "works".

All the information, save when otherwise specified, refers to BVE since version 2.03 to 2.6

Graphic objects, or elements of the scenery, for the BVE simulator are defined by text files and graphic files in .BMP format (standard of Windows). These files are placed in the Object folder of BVE and in its subfolders.

Text files can be in either of two different formats: B3D, native of BVE 1, and CSV, introduced in version 2 of BVE. The main difference, other than the different syntax, is that the CSV format can be produced by saving a normal Excel table in an appropriate way.

	 [image: image1.png]
	Note for Italian users of Windows: Because of the different localization of the operating system, to obtain working CSV files with BVE, it is necessary to change in the International Settings of the Control Panel:

· The decimal separator from comma (,) to point (.)

and

· The grouping symbol from point (.) to space ()

The content of these files is composed of instructions and comments. Instructions follow a formalised syntax, and to some of them formalised parameters have to be provided. Whole instructions and their parameters constitute the language of BVE objects, exactly as happens in any programming language. Names of the instructions are "case insensitive": each name can be written indifferently in either lower or uppercase letters or a mixture of both.

Main tools necessary to create BVE graphic objects are:

· Text editor

· Editor for images BMP format

· Structure Viewer

Text editor

Windows NotePad and WordPad are good enough. If you are already a programmer, you can use your actual favorite text editor (I usually use Ultra Edit from IDM Computer solutions http: //www.idmcomp.com). If someone prefers Microsoft Word, it can also be used, with the only advice to save files in “pure text” format. Anyone who wants to use Microsoft Excel for the CSV format has to remember to check the International Settings of Windows (see note, above).

Editor for images in BMP format

Any graphic program, simple or complicated, can be used at your discretion: there are some free, and some are supplied with scanners or digital cameras. The only trick is to ensure that your work is saved in Windows BMP format (not compressed). I have not much familiarity with these programs and prefer the use of Paint for simple image alterations, namely editing "pixel to pixel", while I usual use Microsoft Photo Editor (part of the MS Office package) to cut out, to reorganize, to rotate, etc..

Structure Viewer

This utility, downloadable from the site of Mackoy http://mackoy.cool.ne.jp/, is indispensable to check results during your work in progress of objects.

While it is beyond my intent to explain the use of a text editor or an image editor, I think that some words would be useful for this tool, as its use is not immediately intuitive.

· Start the program StrView.exe with a double click on its icon: a void gray window will be opened.

Place this window in a corner of the screen.

· Without closing it, now open Windows Explorer (or My Computer) and re-dimension its window so

that you can still see the gray window already opened.

· Find, using Explorer, the folder with the object files B3D or CSV that you want view (usually the
address is: C: \Program files\Bve\Railway\Object and sub folders).
· Click on the icon of the file to visualize and, without releasing the mouse button, drag the cursor
into the visible part of the gray window: you will see that object becomes visualized.
· In the window of the Structure Viewer, you have now these possibilities:
· Normal zoom in or zoom out from the object (arrows Up and Down)
· Fast zoom in or zoom out from the object (arrows PgUp and PgDown)
· Move and rotate the object by dragging it in the window (left and right buttons of the mouse have
different effects

· Del key to clear the window
· F5 key to reload the object after having edited it
If, during the mouse’s movement, the object becomes invisible, it will return visible if you perform an opposite movement to what sent it outside.

While an object is visible in the window of the Structure Viewer, you can drag another object from Explorer: you will see both.

It’s possible, choosing in Explorer more objects simultaneously, to drag them in the Structure Viewer: they will be all visible simultaneously, but it will be not be possible to rotate them, to move them, to remove them or to approach them individually.

If, rather than dragging a B3D or CSV file, you drag a BMP file in the Structure Viewer, this will become a background image that can be moved only closing the window and re-launching the program.

[image: image2.png]
Objects in B3D Format

The following instructions are available to develop objects in B3D format:

[MeshBuilder]

begin the definition of an object
Vertex X,Y,Z

define the coordinates of a vertex

Face V1,V2,V3,...,Vn
define a face visible from only one side

Face2 V1,V2,V3,...,Vn
define a face visible from both sides

Color R,G,B[,Alfa]

color the face already defined
[Texture]

begin the application of a texture to a face
Load Filename

load the bmp image of the texture
Coordinates iVertex, Tx, Ty
define how to use the texture

Transparent R,G,B

define the tone of the color that will be transparent
Comments: To introduce comments in B3D files, type a ; character (semicolon). Everything written to the right of a semicolon will be ignored by BVE.

Empty lines: Empty are ignored by BVE. One or more empty lines could be useful to make the B3D code more easily readable.

Spaces and commas: Between each instruction’s name and the first parameter at least one space is needed. Successive parameters after the first have to be each separated by a comma. Extra spaces at the beginning of the line, or between parameters, are optional and are ignored by BVE. Extra spaces, like empty lines and comments, can make the B3D code easier to read.

Note: Other than mentioned instructions, BVE from version 2.03 to 2.5.3 unofficially allows you to also use Cube, Cylinder, Rotate and Translate instruction, typical of the CSV format, in B3D objects – see note at page 11.

Now let us see in detail the meaning of the B3D instructions and parameters

[MeshBuilder]

Begin the definition of an object
Every B3D object, that in its simplest shape is composed from a plain surface, contains at least a [MeshBuilder] section. Complex objects will have more [MeshBuilder] sections.

Vertex X,Y,Z

Define the coordinates of a vertex

Parameters:

X X coordinate of the vertex (horizontal distance from the axis of the running track)

Y Y coordinate of the vertex (height, vertical from the ground)

Z Z coordinate of the vertex (longitudinal distance along the axis of the running track)
A vertex is a point in the space. Coordinates, in meters, can take positive or negative values and can also have decimal digits. The decimal separator character is the . (point). Positive values indicate shifting aside: to the right for X, upwards for Y, and forwards for Z, while negative values indicate respectively: to the left for X, downwards for Y, and backwards for Z.
Every [MeshBuilder] section should contain at least 3 Vertex instructions (to reproduce a triangular surface), or more commonly 4 to reproduce a rectangular surface. I don’t know if there is a limit to the number of allowed Vertices for a [MeshBuilder] section, but when there are more then ten, the surface becomes too complex and I suggest to subdivide it in to more simple adjacent surfaces. To define every vertex, BVE automatically assigns an index, used to reference to that vertex in next Face instruction: the first vertex has index 0, the second has index 1, the third 2 and so on. The order in which vertex are defined determines the index assigned to each of them.
Example1.b3d (image used by Gaku) - http://www.popkmart.ne.jp/gaku/):
	[MeshBuilder]
Vertex 0,2,0

Vertex 3,2,0

Vertex 3,0,0

Vertex 0,0,0

Face 0,1,2,3

[Texture]
Load Re15.bmp

Coordinates 0,0,0
Coordinates 1,1,0
Coordinates 2,1,1
Coordinates 3,0,1

	Image Re15.bmp [image: image3.png]

0,2,0 3,2,0
Index 0 Index 1 [image: image4.png]

0,0,0 3,0,0
Index 3 Index 2

· Vertex with index 0 is set on the axis of the track (0,2,0), at 2 meters of height from the ground and without shift of longitudinal position.

· Vertex with index 1 is set 3 meters at the right of the axis of the track, at 2 meters of height from the ground and without shift of longitudinal position.

· Vertex with index 2 is set 3 meters at the right of the axis of the track, at the gound level and without shift of longitudinal position.

· Vertex with index 3 is set on the axis of the track, at the ground level and without shift of longitudinal position.

Face V1,V2,V3,...,Vn
Defines a face visible from only one side

Parameters:

V1 Index of the first vertex of the surface of the face
V2 Index of the second vertex of the surface of the face
V3 Index of the third vertex of the surface of the face
…

Vn Index of the last vertex of the surface of the face
Faces are visible when the vertices that define them are arranged in clockwise sense. Faces with vertices arranged in counterclockwise sense become visible when rotating the object by 180 degrees. The simpler face, of triangular shape, is defined from 3 vertex, having indexes from 0 to 2. It doesn’t matter which is the first vertex declared, but it matters that the vertices should normally follow the clockwise sequence of positions (in the case of 4 vertexes Face 0,1,2,3 or Face 2,3,0,1 are equivalent).

Face2 V1,V2,V3,...,Vn
It defines a face visible from both the sides

Parameters:

V1 Index of the first vertex of the surface of the face
V2 Index of the second vertex of the surface of the face
V3 Index of the third vertex of the surface of the face
…

Vn Index of the last vertex of the surface of the face
Contrary to the simple Face instruction, with this instruction faces are visible with vertexes arranged both in clockwise and counterclockwise sense. But the sequence is important; you cannot indicate them in chance order, i.e. out of any sequence.
Color R,G,B[,Alfa]

Color of the face already defined
Parameters:

R
Color of the red component (0-255)

G
Color of the green component (0-255)

B
Color of the blue component (0-255)

Alfa
Amount of opaqueness (0-255)

After a series of Vertex definitions, more then one Face instruction can follow, but only one Color instruction is allowed, that will apply the same color to every defined face.

Using the optional parameter Alfa, a "transparent" color is obtained, or rather a color that leaves to see indistinctly other objects in transparency. The transparency effect is total (invisible surface) with Alfa = 0 and has no effect (totally opaque object) with Alfa = 255.

Example2.b3d

Road signal "Give way" The red triangle is set 5 mm further along the track than the white one, the signal, 60 cm wide, is set with the lowest vertex at a height of 3 meters from the ground

	[MeshBuilder]; Red Triangle

Vertex -0.3, 3.520, 0.005

Vertex 0.3, 3.520, 0.005

Vertex 0 , 3 , 0.005

Face 0,1,2

Color 255,0,0 ; Red

[MeshBuilder]; White Triangle

Vertex -0.19, 3.450, 0

Vertex 0.19, 3.450, 0

Vertex 0 , 3.120, 0

Face 0,1,2
Color 255,255,255 ; White
	 Index 0 Index 1
Red White White Red

-0.3, -0.19, 0.19, 0.3,
3.52, 3.45, 3.45, 3.52,
0.005 0 0 0.005
[image: image5.png]
 White 0, 3.12,0
 Red 0, 3, 0.005

 Index 2

[Texture]

Begin the application of a texture to a face
As an alternative to the Color instruction a [Texture] section can be used to apply an image to a specific face.
Load Filename

Load the bmp image of the texture
Parameters:

Filename
Name of the image file in BMP format that constitutes the texture. The filename has to include the extension (e.g.: tree. BMP). To use files in subfolders from where the B3D file is placed, place the subfolder name first (e.g.: Images\tree.bmp).
To make that object correctly visible with every video card, the format of the BMP file must be in 8-bit colors (namely 65536 colors). It’s also necessary that width and height dimensions in pixels of the bitmap are in powers of 2 (i.e. 2, 4, 8, 16, 32, 64, 128, 256). With some video cards it is also possible to use dimensions of 512 or 1024 pixels and 32 bit colors, but notice that even if they work perfectly on your system, they will possibly not work on other systems. More "difficult" video cards are the common 3DFX Voodoo and the Riva TNT.

The image can also to be of rectangular shape (e.g.: 16x128 pixels), provided that aforementioned values are respected for each side. During the display of the object, BVE automatically redraws the image so that it fills the total surface onto which it is applied.

Coordinates iVertex, Tx, Ty
Define how to use the texture

Parameters:

iVertex
Index of the vertex from which to begin the texture’s application. Each index is defined from the position of the vertex in the sequence of Vertex instructions (see previous description of Vertex instruction)
Tx

x-offset of the image to apply at the vertex (e.g. 0=left, 1=right, etc)
Ty

y-offset of the image to apply at the vertex (e.g. 0=top, 1=bottom, etc)
This is the more difficult to understand instruction to create objects. To understand how it works let us see some varying to the Example1.b3d already seen. Remember that 4 vertexes were defined in clockwise sense, starting from the upper left corner.

Example1.b3d – Basic example: the texture is applied only one time, so to cover the face with the image arranged in erect way.

	Coordinates 0,0,0 ; offset 0 for X and 0 for Y

Coordinates 1,1,0 ; offset 1 for X and 0 for Y

Coordinates 2,1,1 ; offset 1 for X and 1 for Y

Coordinates 3,0,1 ; offset 0 for X and 1 for Y
	[image: image6.png]

Example1-1.b3d - The texture is applied two times, so to cover the face with 2 copies of the image arranged in erect way and repeating vertically.
	Coordinates 0,0,0 ; offset 0 for X and 0 for Y

Coordinates 1,1,0 ; offset 1 for X and 0 for Y

Coordinates 2,1,2 ; offset 1 for X and 2 for Y

Coordinates 3,0,2 ; offset 0 for X and 2 for Y
	[image: image7.png]

Example1-2.b3d - The texture is applied 3 times in horizontal and 2 times in vertical, so to cover the face with 6 copies of the image arranged in erect way, repeating evenly along horizontal and vertical directions.

	Coordinates 0,0,0 ; offset 0 for X and 0 for Y

Coordinates 1,3,0 ; offset 3 for X and 0 for Y

Coordinates 2,3,2 ; offset 3 for X and 2 for Y

Coordinates 3,0,2 ; offset 0 for X and2 for Y
	[image: image8.png]

Example1-3.b3d - The texture is applied only one time, so to cover the face with the image reversed in horizontal (mirrored) and arranged in erect way.

	Coordinates 0, 0,0 ; offset 0 for X and 0 for Y

Coordinates 1,-1,0 ; offset -1 for X and 0 for Y

Coordinates 2,-1,1 ; offset -1 for X and 1 for Y

Coordinates 3, 0,1 ; offset 0 for X and 1 for Y
	[image: image9.png]

Example1-4.b3d - The texture is applied only one time, so to cover the face with the image reversed in horizontal and vertical (overturned).

	Coordinates 0,0,0 ; offset 0 for X and 0 for Y
Coordinates 1,1,0 ; offset 1 for X and 0 for Y
Coordinates 2,1,-1 ; offset 1 for X and -1 for Y
Coordinates 3,0,-1 ; offset 0 for X and -1 for Y
	[image: image10.png]

Example1-5.b3d – It’s also possible to use only a portion of the image: in this case it’s applied 1 time in the height, but offsets for the width are from 0.4 to 0.9, so to apply only a portion of the texture to cover the full surface.
	Coordinates 0,0.4,0 ; offset 0.4 for X and 0 for Y

Coordinates 1,0.9,0 ; offset 0.9 for X and 0 for Y

Coordinates 2,0.9,1 ; offset 0.9 for X and 1 for Y

Coordinates 3,0.4,1 ; offset 0.4 for X and 1 for Y

	[image: image11.png]

Other effects, e.g. stretch and skew, can be achieved by appropriate use of x and y image-offset values.
Transparent R,G,B

Define the tone of the color that will be transparent
Parameters:

R
Tone of the Red component (0-255)

G
Tone of the Green component (0-255)

B
Tone of the Blue component (0-255)

This optional instruction makes transparent those portions of the texture corresponding to the specified tone of color according to the RGB parameters and is especially useful for creating trees and shrubs using photos. The most used colors are pure Blue (0,0,255) and black (0,0,0). Usually the first one leaves a purplish halo around objects, visible only with particularly video cards. Also note with some video cards, if the depth of image’s colors is 32 bit, the transparency does not work.

Example3.b3d (image used is by Paul Woozley (http://bve_fan.tripod.com/bvefan/)
	[MeshBuilder]

Vertex 0,8,0

Vertex 4,8,0

Vertex 4,0,0

Vertex 0,0,0

Face 0,1,2,3

[Texture]

Load treefir.bmp

Coordinates 0,0,0

Coordinates 1,1,0

Coordinates 2,1,1

Coordinates 3,0,1

Transparent 0,0,0
	Index 0 Index 1 Image file 0,8,0 4,8,0 treefir.bmp [image: image12.png] [image: image13.png] 0,0,0 4,0,0
Index 3 Index 2

The vertex with Index 0 has been set right on the track’s X axis (0,8,0), at 8 meters of height from the ground and without longitudinal (Z) offset.

 Example of B3D object (house with tree by Mackoy)

This object is expected to be positioned at the left of the track on which the train runs, so only 2 sides of the house and 2 slides of the roof will be drawn, omitting those parts that will not be visible. Keep in mind that in this way, besides simplifying the construction work, a greater frame rate will be achieved during the game, because hidden parts of objects have to be constructed, even if fruitlessly, by the graphic engine of the game.

Used textures

	Home1.bmp Tree.bmp

 [image: image14.png] [image: image15.png]
	- Notice that the BMP image of the house represents the succession of two

 walls that will be visible. We’ll see how to use only a part of it for each side.

- Notice also that the background of the tree’s texture is black.

 Object created
[image: image16.png]
Code of the B3D file
	[MeshBuilder]

Vertex -6, 6, 0

Vertex 0, 6, 0

Vertex 0, 6, 8

Vertex -6, 0, 0

Vertex 0, 0, 0

Vertex 0, 0, 8

Face 0, 1, 4, 3

Face 1, 2, 5, 4

[Texture]

Load home1.bmp

Coordinates 0, 0, 0

Coordinates 1, 0.5, 0

Coordinates 2, 1, 0

Coordinates 3, 0, 1

Coordinates 4, 0.5, 1

Coordinates 5, 1, 1
	Definition of vertexes and construction of the wall

vertex 0
vertex 1
vertex 2
vertex 3
vertex 4
vertex 5

Front wall | Notice the clockwise sequence of
Side wall | vertexes

vertex 0 - offset X=0 - offset Y=0
vertex 1 - offset X=0.5 - offset Y=0
vertex 2 - offset X=1 - offset Y=0

vertex 3 - offset X=0 - offset Y=1
vertex 4 - offset X=0.5 - offset Y=1
vertex 5 - offset X=1 - offset Y=1

	[MeshBuilder]
Vertex 0.6, 5.8, 8.6
Vertex 0.6, 5.8, -0.6
Vertex -6.6, 5.8, -0.6
Vertex -3, 7.5, 3
Vertex -3, 7.5, 5
Face 1, 2, 3
Face 0, 1, 3, 4
Color 128, 64, 64

	Definition of vertexes and construction of the roof

vertex 0

vertex 1

vertex 2

vertex 3

vertex 4

Front slide. | Notice the clockwise sequence of
Side slide. | vertices

Brick color to both the faces

	[MeshBuilder]
Vertex 0, 0, 10

Vertex 0, 8, 10

Vertex 2, 8, 10

Vertex 2, 0, 10
Face 0, 1, 2, 3
[Texture]
Load Tree.bmp
Coordinates 1, 0, 0

Coordinates 2, 1, 0

Coordinates 0, 0, 1

Coordinates 3, 1, 1
Transparent 0, 0, 0
[MeshBuilder]

Vertex 1, 0, 9

Vertex 1, 8, 9

Vertex 1, 8, 11

Vertex 1, 0, 11

Face 0, 1, 2, 3
[Texture]

Load Tree.bmp

Coordinates 1, 0, 0

Coordinates 2, 1, 0

Coordinates 0, 0, 1

Coordinates 3, 1, 1

transparent 0, 0, 0
	Tree - frontal image
vertex 0

vertex 1

vertex 2

vertex 3
vertex 0 - offset X=0 - offset Y=0

vertex 1 - offset X=1 - offset Y=0

vertex 2 - offset X=0 - offset Y=1

vertex 3 - offset X=1 - offset Y=1

Tree - side image
vertex 0

vertex 1

vertex 2

vertex 3

vertex 0 - offset X=0 - offset Y=0

vertex 1 - offset X=1 - offset Y=0

vertex 2 - offset X=0 - offset Y=1

vertex 3 - offset X=1 - offset Y=1

Transparent color = black

Objects in CSV format
The following instructions are available to develop objects in CSV format:

CreateMeshBuilder

Begin the definition of an object
AddVertex,X,Y,Z

Define the coordinates of a Vertex

AddFace,V1,V2,V3,...,Vn
Define a face visible from only one side

AddFace2,V1,V2,V3,...,Vn
Define a face visible from both sides

GenerateNormals

Draw the geometric figure
Cube,R1[,R2,R3]

Define a cube or a prism with rectangular base

Cylinder,N,R1,R2,H
Define a cylinder, or better, a prism with base of N sides

Rotate,Ax,Ay,Az,Theta
Rotates the geometric figure in the space
Translate,X,Y,Z

Move the geometric figure in the space
SetColor,R,G,B[,Alfa]
Color the figure already defined
LoadTexture,Filename
Load the bmp image of the texture
SetTextureCoordinates,iVertex,Tx,Ty
Define how to use the texture

SetDecalTransparentColor,R,G,B
Define the tone of the color that will be transparent

Note: Instructions in boldface don’t have official correspondence in B3D format, but can be used just the same if the first comma after the instruction’s name is replaced with a space.

Comments: To introduce comments in CSV files, type a ; character (semicolon). Everything written at the right of a semicolon will be ignored by BVE.

Empty lines: Empty are ignored from BVE. One or more empty lines could be useful to make the CSV code easier to read.

Commas and spaces: Each instruction’s name and first parameter must be separated by a comma. Successive parameters after the first must be separated by a comma. A comma after the last parameter is optional. Spaces at the beginning of the line or between parameters are optional and are ignored by BVE. Extra spaces, like empty lines and comments, can make the CSV code easier to read.

Now let us see the CSV instructions and the meaning of parameters in detail

CreateMeshBuilder

Begins the definition of an object

Every CSV object contains at least a CreateMeshBuilder section. Complex objects will have more CreateMeshBuilder sections.

The CreateMeshBuilder instruction for CSV format is similar to the [MeshBuilder] instruction of B3D format.
AddVertex,X,Y,Z
Define the coordinates of a vertex

Parameters:

X X coordinate of the vertex (horizontal distance from the axis of the running track)

Y Y coordinate of the vertex (height, vertical from the ground)

Z Z coordinate of the vertex (longitudinal distance on the axis of the running track)
A vertex is a point in the space. Coordinates, in meters, can take positive or negative values and can have also decimal digits. The decimal separator character is the . (point).

Positive values indicate shifting: to the right for X, upwards for Y, and forwards for Z, while negative values indicate respectively: to the left for X, downwards for Y, and backwards for Z.
Every CreateMeshBuilder section, if it does not contain Cube or Cylinder instructions, should contain at least 3 AddVertex instructions (to produce a triangular surface), or more commonly 4 to produce a rectangular surface. I don’t know if there is a limit to the number of AddVertex allowed for a CreateMeshBuilder section, but when there are more then ten, the surface becomes much too complex and I suggest to subdivide it into more simple adjacent surfaces.

To define each vertex, BVE automatically assigns an index that is used to reference that vertex in next AddFace instruction: the first vertex has index 0, the second has index 1, the third 2 and so on. The order in which vertices are defined determines so what index is assigned to each of them.
The AddVertex instruction for CSV format is similar to the Vertex instruction of B3D format.
Example1.csv (image used by Gaku - http://www.popkmart.ne.jp/gaku/):
	CreateMeshBuilder

AddVertex,0,2,0

AddVertex,3,2,0

AddVertex,3,0,0

AddVertex,0,0,0

AddFace,0,1,2,3

LoadTexture,Re15.bmp SetTextureCoordinates,0,0,0 SetTextureCoordinates,1,1,0 SetTextureCoordinates,2,1,1 SetTextureCoordinates,3,0,1

	Image Re15.bmp [image: image17.png]
Index 0 Index 1
0,2,0 3,2,0
 [image: image18.png]
0,0,0 3,0,0

Index 3 Index 2

· Vertex with index 0 is set on the axis of the track (0,2,0), at 2 meters of height from the ground and without shift of longitudinal position.

· Vertex with index 1 is set 3 meters to the right of the axis of the track, at 2 meters of height from the ground and without shift of longitudinal position.

· Vertex with index 2 is set 3 meters to the right of the axis of the track, at the ground level and without shift of longitudinal position.

· Vertex with index 3 is set on the axis of the track, at the ground level and without shift of longitudinal position.

AddFace,V1,V2,V3,...,Vn
Define a face visible from only one side

Parameters:

V1 Index of the first vertex of the surface of the face
V2 Index of the second vertex of the surface of the face
V3 Index of the third vertex of the surface of the face
…

Vn Index of the last vertex of the surface of the face
Faces are visible when vertices that define them are arranged in clockwise sense. Faces with vertices arranged in counterclockwise sense become visible when rotating the object by 180 degrees. The simplest face, of triangular shape, is defined from 3 vertices, having indexes from 0 to 2. It doesn’t matter which vertex is declared first, but it matters that the advisable sequence of positions is clockwise (i.e. in the case of 4 vertices, AddFace,0,1,2,3 or AddFace,2,3,0,1 are equivalent).

The AddFace instruction for CSV format is similar to the Face instruction of B3D format.
AddFace2,V1,V2,V3,...,Vn Define a face visible from both the sides

Parameters:

V1 Index of the first vertex of the surface of the face
V2 Index of the second vertex of the surface of the face
V3 Index of the third vertex of the surface of the face
…

Vn Index of the last vertex of the surface of the face
Contrary to the simple AddFace instruction, with this instruction faces are visible with vertexes arranged both in clockwise and counterclockwise sense. However it is not allowed to indicate them in chance order.
The AddFace2 instruction for CSV format is similar to the Face2 instruction of B3D format.
GenerateNormals

Draws the geometric figure.

This instruction, without parameters, is placed at the conclusion of a series of AddFace or AddFace2 instructions and before a SetColor or LoadTexture instruction.

The GenerateNormals instruction for CSV format has no corresponding instruction in B3D format.

Cube,Rx[,Ry,Rz]

Define a cube or a cuboid with rectangular base

Parameters:

Rx
Half of length of the side X of the cuboid, or half the length of any side of the cube if Ry and Rz parameters are omitted, in meters

Ry
Half of the height in meters (if omitted or = 0 total height is equal to 2 times Rx)

Rz
Half of the depth in meters (if omitted or = 0 total depth is equal to 2 times Rx)

This is one of the 2 new implementations developed for the CSV format. It allows you to build, indicating little data, a cube or a cuboid.

The center of the solid is automatically set at coordinates X = 0, Y = 0, Z = 0.

The solid is orientated in parallel to X, Y and Z axes.

To orientate it differently we can use Translate and Rotate instructions respectively.

BVE assigns automatically to the cube 8 vertexes and 6 faces, just as if the following instructions had been used:

AddVertex,+Rx,+Ry,-Rz
; vertex 0

AddVertex,+Rx,-Ry,-Rz
; vertex 1

AddVertex,-Rx,-Ry,-Rz
; vertex 2

AddVertex,-Rx,+Ry,-Rz
; vertex 3

AddVertex,+Rx,+Ry,+Rz
; vertex 4

AddVertex,+Rx,-Ry,+Rz
; vertex 5

AddVertex,-Rx,-Ry,+Rz
; vertex 6

AddVertex,-Rx,+Ry,+Rz
; vertex 7

Addface,0,1,2,3 ; Front Face

Addface,0,4,5,1 ; Right lateral Face

Addface,0,3,7,4 ; Upper Face

Addface,6,5,4,7 ; Back Face

Addface,6,7,3,2 ; Left lateral Face

Addface,6,2,1,5 ; Lower Face

Generatenormals

This sequence of instruction is equivalent to the only one instruction: Cube, Rx, Ry, Rz

[image: image19.png]
The solid created with the Cube instruction can be colored with the SetColor instruction (otherwise it will be white) : all the faces will be the same color.

It is also possible to apply a texture with reference to vertexes shown in the above picture. Note however that, given the specified orientation of the vertices, symmetric textures are easily usable, but not so much those asymmetric. These last are only correctly usable on 3 consecutive faces, because the image on remaining faces will be distorted with a rather weird specular effect (note however that, during the simulation, only 3 faces of the solid will be always visible).

The Cube instruction for CSV format has no official corresponding instruction in B3D format.

Cylinder,N,R1,R2,H Define a cylinder, or better, a prism with base of N sides

Parameters:

N
Number of sides of the base

R1
Half the diagonal (ray/radius of the circumscribed circle) of the upper base in meters

R2
Half the diagonal (ray/radius of the circumscribed circle) of the lower base in meters

H
Height in meters

This is the second new implementation for the CSV object format. It allows you to build, indicating little data, a cylinder or a regular prism. To tell the truth, with the Cylinder instruction it’s not possible to build a true cylinder, but a regular prism composed from two bases and a variable number of sides from 2 to N. This can approximate a cylinder. I don’t know from any official source how large the N value can be, but with 2500 the solid can be visualized, while with 25000 it hangs the Structure viewer.

To simulate a cylinder of small radius, like by example a Pole, I suggest to use low values for sides (N=6 or N=8), because, due to the distance in which it’s viewed passing with the train, it will seem a perfect cylinder.

The value 64 could be used for objects having a radius of some meters, also because increasing the side’s number drastically decreases the frame rate of the game.

The center of the solid is automatically set at coordinates X = 0, Y = 0, Z = 0.

The solid is orientated in parallel to X, Y and Z axis, with height H aligned with the Y axis.

To orientate it differently we can use Translate and Rotate instructions respectively.

BVE automatically assigns to the prism 2 vertices for every edge and a face for every side, like in the following figure:

[image: image20.png]
Vertex 0 is always that upwards of the first corner to the right (memory that the number of corners is defined from N), vertex 1 is that correspondent in lower part. Others follow in counterclockwise sense (looking at the solid from above): upper vertices are numbered even and lower vertices are numbered odd.

The first face is set from vertexes 2,3,1,0 - the second one from 4,5,3,2 - the third one from 6,7,5,4 and so on, in the above example until 0,1,15,14.

The solid created with the Cylinder instruction can be colored with the SetColor instruction (otherwise it results white): all the faces will be the same color.

It is also possible to apply a texture with reference to vertexes shown in the above picture. Note however that, given the specified orientation of the vertexes, symmetric textures are easily usable, but not so much those asymmetric. These last are only correctly usable on all but one consecutive faces, because the image on the remaining face will be composed from an overturned and mirrored image containing what was distributed on other faces.

Note however that it is possible to orientate the prism in manner that such a face will always be invisible – hidden - during the simulation.

The Cylinder instruction for CSV format has no official corresponding instruction in B3D format.

SetColor,R,G,B[,Alfa]
Set the color of the face already defined
Parameters:

R
Color of the red component (0-255)

G
Color of the green component (0-255)

B
Color of the blue component (0-255)

Alfa
Amount of opaqueness (0-255)

After a GenerateNormals, Cube or Cylinder instruction a SetColor instruction can be used to apply the same color to all the faces previously defined, or to every surface of the solid.

Using the optional parameter Alfa, a "transparent" color is obtained, or rather a color that allows us to see indistinctly other objects in transparency. The transparency effect is total (invisible surface) with Alfa = 0 and has no effect (totally opaque object) with Alfa = 255.

The SetColor instruction for CSV format is similar to the Color instruction of B3D format.
Example2.csv

Road signal "Give way" The triangle Red is positioned 5 mm further along the track than the White, the signal, 60cm wide, is positioned with its lowest vertex at a height of 3 meters from the ground.

	CreateMeshBuilder ;Triangle Red

AddVertex, -0.3, 3.520, 0.005

AddVertex, 0.3, 3.520, 0.005

AddVertex, 0 , 3 , 0.005

AddFace,0,1,2

GenerateNormals

SetColor,255,0,0 ; Red

CreateMeshBuilder ;Triangle White AddVertex, -0.19, 3.450, 0

AddVertex, 0.19, 3.450, 0

AddVertex, 0 , 3.120, 0

AddFace,0,1,2

GenerateNormals

SetColor,255,255,255 ; White
	 Index 0 Index 1
Red White White Red

-0.3, -0.19, 0.19, 0.3,
3.52, 3.45, 3.45, 3.52,
0.005 0 0 0.005
[image: image21.png]
 White 0, 3.12,0
 Red 0, 3, 0.005

 Index 2

Rotate,Ax,Ay,Az,Theta
Rotate the geometric figure in the space
Parameters:

Ax
Rotation around the X axis horizontal (0 or 1)
Ay
Rotation around the Y axis vertical (0 or 1)
Az
Rotation around the Z axis longitudinal (0 or 1)
Theta
Rotation angle in degrees (from -359 to 359): positive values give a counterclockwise rotation and negative values give a clockwise rotation (Viewing along axis in positive direction).

Ax, Ay and Az can take the value of 0 or 1 in this way:

1, 0, 0, - the rotation is around the axis X (horizontal).
0, 1, 0, - the rotation is around the axis Y (vertical)
0, 0, 1, - the rotation is around the axis Z (longitudinal)

0, 0, 0, - this is a special case, same as 1, 0, 0, (i.e. rotate around X axis only).

It’s possible to rotate simultaneously the object on more than one axle using more parameters A.. = 1, but the result is difficult to control: to have better control it’s better to use more consecutive Rotate instructions, each one having only one A.. = 1 parameter set.

This instruction is indispensable to orientate solids created with the Cube or Cylinder method, that otherwise are always set vertical. It works equally well (but has little sense) for figures defined using AddVertex / AddFace methods

The Rotate instruction for CSV format has no official corresponding in B3D format.

Translate,X,Y,Z

It moves the geometric figure in the space
Parameters:

X
Value in meters of the (side) horizontal movement
Y
Value in meters of the (up / down) vertical movement
Z
Value in meters of the (forward / back) longitudinal movement

Also this instruction works equally well (but has little sense) for figures defined using AddVertex / AddFace methods, but is indispensable to position a solid created with the Cube or Cylinder method, otherwise set always at coordinates X = 0, Y = 0, Z = 0.

Note that the movement has to be calculated from the "center" and not from the outside of the solid.

In case of combined use of both Rotate and Translate instructions, Rotate should be first. If Rotate comes after Translate, the movement happens along a rotated axis with rather weird results.
The Translate instruction for CSV format has no official corresponding instruction in B3D format.

LoadTexture,Filename
Loads the bmp image of the texture
Parameters:

Filename
Name of the image file in BMP format that constitutes the texture. The filename has to include the extension (e.g.: tree. BMP). To use files in subfolders of that in which the CSV file is placed, place the subfolder’s name first (e.g.: Images\tree.bmp).
To make an object correctly visible with every video card, the format of the BMP file must be in 8 bit colors (namely 65,536 colors). It’s also necessary that width and height dimensions in pixels of the bitmap are in powers of 2 (2, 4, 8, 16, 32, 64, 128, 256). With some video cards it is also possible to use dimensions of 512 or 1024 pixels and 32 bit colors, but note that even if they work perfectly on your system, they will possibly not work on other systems. More "difficult" video cards are the common 3DFX Voodoo and the Riva TNT.

The image can also to be of rectangular shape (E.g.: 16x128 pixels), provided that the aforementioned values are respected for each side. During the display of the object, BVE redraws the image automatically, so that it fills the total surface on which it is applied.

The LoadTexture instruction for CSV format is similar to the Load instruction of B3D format.
SetTextureCoordinates,iVertex,Tx,Ty
Define how to use the texture

Parameters:

iVertex
Index of the vertex from which to begin the texture’s application. Each index is defined from the position of the vertexices in the sequence of AddVertex instructions (see earlier description of AddVertex).
Tx

x-offset of the image to apply at the vertex (e.g. 0=left, 1=right, etc)
Ty

y-offset of the image to apply at the vertex (e.g. 0=top, 1=bottom, etc)
This is the more difficult to understand instruction to create objects. To understand how it works let us see some variations of the Example1.csv already seen. Remember that 4 vertexes, 0, 1, 2, 3, were defined in clockwise sense, starting from the upper left corner.

Example1.csv – Basic example: The texture is applied only one time, to cover the face with the image arranged in erect way.

	SetTextureCoordinates,0,0,0 ;offset 0 for X and 0 for Y

SetTextureCoordinates,1,1,0 ;offset 1 for X and 0 for Y SetTextureCoordinates,2,1,1 ;offset 1 for X and 1 for Y SetTextureCoordinates,3,0,1 ;offset 0 for X and 1 for Y
	[image: image22.png]

Example1-1.csv - The texture is applied two times, so to cover the face with 2 copies of the image arranged in erect way and repeated vertically.
	SetTextureCoordinates,0,0,0 ;offset 0 for X and 0 for Y SetTextureCoordinates,1,1,0 ;offset 1 for X and 0 for Y SetTextureCoordinates,2,1,2 ;offset 1 for X and 2 for Y SetTextureCoordinates,3,0,2 ;offset 0 for X and 2 for Y
	[image: image23.png]

Example1-2.csv - The texture is applied 3 times in horizontal and 2 times in vertical, so to cover the face with 6 copies of the image arranged in erect way, repeating evenly along horizontal and vertical directions.

	SetTextureCoordinates,0,0,0 ;offset 0 for X and 0 for Y SetTextureCoordinates,1,3,0 ;offset 3 for X and 0 for Y SetTextureCoordinates,2,3,2 ;offset 3 for X and 2 for Y SetTextureCoordinates,3,0,2 ;offset 0 for X and 2 for Y

	[image: image24.png]

Example1-3.csv - The texture is applied only one time, so to cover the face with the image reversed in horizontal (mirrored) and arranged in erect way.

	SetTextureCoordinates,0, 0,0 ;offset 0 for X and 0 for Y SetTextureCoordinates,1,-1,0 ;offset -1 for X and 0 for Y SetTextureCoordinates,2,-1,1 ;offset -1 for X and 1 for Y SetTextureCoordinates,3, 0,1 ;offset 0 for X and 1 for Y
	[image: image25.png]

Example1-4.csv - The texture is applied only one time, so to cover the face with the image reversed in horizontal and vertical (overturned).
	SetTextureCoordinates,0,0,0 ;offset 0 for X and 0 for Y SetTextureCoordinates,1,1,0 ;offset 1 for X and 0 for Y SetTextureCoordinates,2,1,-1 ;offset 1 for X and -1 for Y SetTextureCoordinates,3,0,-1 ;offset 0 for X and -1 for Y
	[image: image26.png]

Example1-5.csv - It’s also possible to use only a portion of the image: in this case it’s applied 1 time in the height, but image-offsets for the width are from 0.4 to 0.9, so to apply only a portion of the texture to cover the full surface.
	SetTextureCoordinates,0,0.4,0 ;offset 0.4 for X and 0 for Y SetTextureCoordinates,1,0.9,0 ;offset 0.9 for X and 0 for Y SetTextureCoordinates,2,0.9,1 ;offset 0.9 for X and 1 for Y SetTextureCoordinates,3,0.4,1 ;offset 0.4 for X and 1 for Y
	[image: image27.png]

Other effects, e.g. stretch and skew, can also be achieved by appropriate use of x and y image-offset values.
The SetTextureCoordinates instruction for CSV format is similar to the Coordinates instruction of B3D format.
SetDecalTransparentColor,R,G,B Define the tone for the color that will be transparent

Parameters:

R
Tone of the Red component (0-255)

G
Tone of the Green component (0-255)

B
Tone of the Blue component (0-255)

This optional instruction makes transparent those portions of the texture corresponding to the specified tone of color according to the RGB parameters, and is especially useful to create trees and shrubs using photos. The most used colors are pure Blue (0,0,255) and black (0,0,0). Usually the first one leaves a purplish halo around objects, visible only with particularly video cards. Also with some video cards, if the depth of image’s colors is 32 bit, the transparency does not work.

The SetDecalTransparentColor instruction for CSV format is similar to the Transparent instruction of B3D format.
Example of CSV object (Power Pole)

The object is expected to be positioned on the running track, with the clamp for the contact wire at 5,5 meters of height from the track’s level. The pole will be visible on left, at 2,6 meters from the axis of the track. This example doesn’t use textures, but shows how using Cube and Cylinder instructions to develop CSV objects can be relatively simple, also for complex objects.

I’d like you to remember that the objects built in this way, during their positioning on the route, can be orientated in any manner, but… are very frame-rate consuming!

Built object
[image: image28.png]

CSV file code (PaloFS.csv)

	; 1 - Base

CreateMeshBuilder

Cube, 0.3, 0.45, 0.3

Translate, -2.6, -0.5, 0

SetColor, 176, 176, 176

	[image: image29.png]

	; 2 – Pole

CreateMeshBuilder

Cylinder, 6, 0.12, 0.15, 8.1

Translate, -2.6, 3.45, 0

SetColor, 176, 176, 192
	[image: image30.png]

	; 3 – Bracket

CreateMeshBuilder

Cylinder, 6, 0.08, 0.08, 3.2

Rotate, 0, 0, 1, 90

Translate, -1 , 6.2, 0

SetColor, 176, 176, 192
	[image: image31.png]

	; 4 – Rod

CreateMeshBuilder

Cylinder, 3, 0.03, 0.03, 2.1

Rotate, 0, 0, 1, 68

Translate, -1.6, 6.6, 0

SetColor, 128, 128, 128
	[image: image32.png]

	; 5 - Insulator for supporting rope - pivot

CreateMeshBuilder

Cylinder, 4, 0.025, 0.025, 0.5

Translate, 0, 6.65, 0

SetColor, 247, 247, 247
	 [image: image33.png]

	; 6 - Insulator for supporting rope - left small tab

CreateMeshBuilder

Cube, 0.025, 0.16, 0.07

Rotate, 0, 0, 1, -15

Translate, -0.065, 6.4, 0

SetColor, 176, 176, 192
	[image: image34.png]

	; 7 - Insulator for supporting rope – right small tab

CreateMeshBuilder

Cube, 0.025, 0.16, 0.07

Rotate, 0, 0, 1, 15

Translate, 0.065, 6.4, 0

SetColor, 176, 176, 192
	[image: image35.png]

	; 8 - Insulator for supporting rope - insulator

CreateMeshBuilder

Cylinder, 6, 0.06, 0.06, 0.20

Translate, 0, 6.72, 0

SetColor, 247, 247, 247
	[image: image36.png]

	; 9 - Strap part 1

CreateMeshBuilder

Cylinder, 3, 0.04, 0.04, 0.5

Rotate, 0, 0, 1, 90

Translate, -0.0, 6.08, 0

SetColor, 128, 128, 128
	[image: image37.png]

	; 10 - Strap part 2

CreateMeshBuilder

Cylinder, 3, 0.04, 0.04, 0.81

Rotate, 0, 0, 1, 64

Translate, 0.6, 5.9, 0

SetColor, 128, 128, 128
	[image: image38.png]

	; 11 - Strap part 3

CreateMeshBuilder

Cylinder, 3, 0.04, 0.04, 0.2

Rotate, 0, 0, 1, 30

Translate, 1 , 5.65, 0

SetColor, 128, 128, 128
	[image: image39.png]

	; 12 - Insulator of the Strap

CreateMeshBuilder

Cylinder, 6, 0.06, 0.06, 0.25

Rotate, 0, 0, 1, -60

Translate, 0.9, 5.54, 0

SetColor, 200, 200, 200
	[image: image40.png]

	; 13 - Strap Anchorage Wire part 1

CreateMeshBuilder

Cylinder, 3, 0.02, 0.02, 0.3

Rotate, 0, 0, 1, 60

Translate, 0.67, 5.54, 0

SetColor, 64, 64, 64
	 [image: image41.png]

	; 14 - Strap Anchorage Wire part 2

CreateMeshBuilder

Cylinder, 3, 0.02, 0.02, 0.6

Rotate, 0, 0, 1, -80

Translate, 0.25, 5.57, 0

SetColor, 64, 64, 64
	[image: image42.png]

	; 15 - Electrical Clamp

CreateMeshBuilder

Cube, 0.01, 0.02, 0.15

Translate, 0, 5.5, 0

SetColor, 32, 32, 32
	[image: image43.png]

Example of CSV object (Bench)

The object is expected to be positioned on the running track. The bench will be visible on the right, at 3 meters from the axis of the track. Also this example does not use textures, but shows how the use of instructions Cube, Translate and Rotate can be sufficient to build simple objects easily.

I’d like you to remember that objects built in this way, during their positioning on the route, can be orientated in any manner.

Built object

[image: image44.png]

Code of the CSV file (Bench.csv)

	CreateMeshBuilder ; 1 - Leg Front 1

Cube, 0.02, 0.25, 0.02

Translate, 3.01, 0.25, 0.2

SetColor, 24, 24, 24

CreateMeshBuilder ; 2 - Leg Back 1

Cube, 0.02, 0.24, 0.02

Translate, 3.39, 0.24, 0.2

SetColor, 24, 24, 24

CreateMeshBuilder ; 3 - Support Back 1

Cube, 0.02, 0.21, 0.02

Rotate, 0, 0, 1, -10

Translate, 3.45, 0.69, 0.2

SetColor, 24, 24, 24

CreateMeshBuilder ; 4 - Support Bottom 1

Cube, 0.22, 0.02, 0.02

Rotate, 0, 0, 1, -6

Translate, 3.21, 0.5, 0.2

SetColor, 24, 24, 24

	1

2

3

4

	CreateMeshBuilder ; 5 - Leg Front 2

Cube, 0.02, 0.25, 0.02

Translate, 3.01, 0.25, 1.8

SetColor, 24, 24, 24

CreateMeshBuilder ; 6 - Leg Back 2

Cube, 0.02, 0.24, 0.02

Translate, 3.39, 0.24, 1.8

SetColor, 24, 24, 24

CreateMeshBuilder ; 7 - Support Back 2

Cube, 0.02, 0.21, 0.02

Rotate, 0, 0, 1, -10

Translate, 3.45, 0.69, 1.8

SetColor, 24, 24, 24

CreateMeshBuilder ; 8 - Support bottom 2

Cube, 0.22, 0.02, 0.02

Rotate, 0, 0, 1, -6

Translate, 3.21, 0.5, 1.8

SetColor, 24, 24, 24

CreateMeshBuilder ; 9 - Bench bottom 1st Plank

Cube, 0.1, 0.015, 1

Rotate, 0, 0, 1, -5

Translate, 3.065, 0.55, 1

SetColor, 24, 128, 24

CreateMeshBuilder ; 10 - Bench bottom 2nd Plank

Cube, 0.1, 0.015, 1

Rotate, 0, 0, 1, -6

Translate, 3.3, 0.52, 1

SetColor, 24, 128, 24

CreateMeshBuilder ; 11 - Back

Cube, 0.1, 0.015, 1

Rotate, 0, 0, 1, 82

Translate, 3.44, 0.78, 1

SetColor, 24, 128, 24
	5

6

7

8

9

10

11

Example of CSV object (Telephone Booth)

The object is expected to be positioned on the running track. The booth will be visible on the left, at 2 meters from the axis of the track. The object can also be positioned at the right of the track, by rotating it through 180 degrees, the back face (without door) will then be visible. This example shows how to use a texture to cover the surface; Cube and Translate instructions are also used to add certain details.

The example considers 2 different ways to build the object, both giving the same visual result.

Built object

[image: image45.png]

Code of the CSV file (CabinaTelef-1.csv)

	; Front wall with door

CreateMeshBuilder

AddVertex,-3,2.5,0 ;Index 0 – front up left

AddVertex,-2,2.5,0 ;Index 1 - front up right

AddVertex,-2,0 ,0 ;Index 2 - front down right

AddVertex,-3,0 ,0 ;Index 3 - front down left

AddFace,0,1,2,3

GenerateNormals

LoadTexture,CabinaTelef.bmp

SetTextureCoordinates,0, 0 ,0 ;Vert.0 - front up left

SetTextureCoordinates,1, 0.25 ,0 ;Vert.1 - front up right

SeTextureCoordinates,2, 0.25 ,1 ;Vert.2 -front down right

SetTextureCoordinates,3, 0 ,1 ;Vert.3 -front down left
	[image: image46.png]

	; Side wall with little windows

CreateMeshBuilder

AddVertex,-2,2.5,1 ;Index 0 - front up right

AddVertex,-2,2.5,1 ;Index 1 - back up right

AddVertex,-2,0 ,1 ;Index 2 - back down right

AddVertex,-2,0 ,0 ;Index 3 - front down right

AddFace,0,1,2,3

GenerateNormals

LoadTexture,CabinaTelef.bmp

SetTextureCoordinates,0, 0.25 ,0 ;Vert.0 - front up right

SetTextureCoordinates,1, 0.5 ,0 ;Vert.1 - back up right

SetTextureCoordinates,2,0.5 ,1 ;Vert.2 -back down right

SetTextureCoordinates,3, 0.25 ,1 ;Vert.3-front down right
	[image: image47.png]

	; Back wall without door (to view this

; side you have to rotate the object)

CreateMeshBuilder

AddVertex,-2,2.5,1 ;Index 0 - back up right

AddVertex,-3,2.5,1 ;Index 1 - back up left

AddVertex,-3,0 ,1 ;Index 2 - back down left

AddVertex,-2,0 ,1 ;Index 3 - back down right

AddFace,0,1,2,3

GenerateNormals

LoadTexture,CabinaTelef.bmp

SetTextureCoordinates,0, 0.5 ,0 ;Vert.0 - back up right

SetTextureCoordinates,1, 0.75 ,0 ;Vert.1 - back up left

SetTextureCoordinates,2, 0.75 ,1 ;Vert.2 - back down left

SetTextureCoordinates,3, 0.5 ,1 ;Vert.3 -back down right
	[image: image48.png]

	CreateMeshBuilder ; Flat roof

Cube, 0.65, 0.06

Translate, -2.5, 2.55,0.5

SetColor, 191, 191, 191

CreateMeshBuilder ; Base

Cube, 0.7, 0.15

Translate, -2.5, -0.15,0.5

SetColor, 176, 176, 176
	[image: image49.png]

 That shown above is the simplest method, or at least the more intuitive. It requires 3 different CreateMeshBuilder sections to define the vertices. Every section defines vertices and applies the texture to one surface for each section.

The method that we will see now uses only one CreateMeshBuilder section to create all of the vertices

Code of the CSV file (CabinaTelef-2.csv)
	; Vertexes for all the walls of the booth

CreateMeshBuilder

AddVertex,-3,2.5,0 ;Index 0 – front up left

AddVertex,-2,2.5,0 ;Index 1 - front up right

AddVertex,-2,0 ,0 ;Index 2 - front down right

AddVertex,-3,0 ,0 ;Index 3 - front down left

AddVertex,-2,2.5,1 ;Index 4 - back up right

AddVertex,-2,0 ,1 ;Index 5 - back down right

AddVertex,-3,2.5,1 ;Index 6 - back up left

AddVertex,-3,0 ,1 ;Index 7 - back down left

AddFace2,0,1,2,3 ; Front wall with door

AddFace2,1,4,5,2 ; Side wall with little windows

AddFace2,4,6,7,5 ; Back wall without door

GenerateNormals

LoadTexture,CabinaTelef.bmp

SetTextureCoordinates,0, 0 ,0 ; Vert.0 - front up left

SetTextureCoordinates,1, 0.25 ,0 ; Vert.1 - front up right

SetTextureCoordinates,2, 0.25 ,1 ; Vert.2 - front down right

SetTextureCoordinates,3, 0 ,1 ; Vert.3 - front down left

SetTextureCoordinates,4, 0.5 ,0 ; Vert.4 - back up right

SetTextureCoordinates,5, 0.5 ,1 ; Vert.5 - back down right

SetTextureCoordinates,6, 0.75 ,0 ; Vert.6 - back up left SetTextureCoordinates,7, 0.75 ,1 ; Vert.7 - back down left

CreateMeshBuilder ; Flat roof

Cube, 0.65, 0.06

Translate, -2.5, 2.55,0.5

SetColor, 191, 191, 191

CreateMeshBuilder ; Base

Cube, 0.7, 0.15

Translate, -2.5, -0.15,0.5

SetColor, 176, 176, 176
	[image: image50.png]
[image: image51.png]

In the CabinaTelef-2.csv example the instruction AddFace2 is used, rather than AddFace, with the only purpose to show how the texture is applied to both the sides of the various surfaces.

Example of CSV object (Italian FS cement fence)

BVE object reproducing a piece of FS (Ferrovie dello Stato) fence in cement 25 meters long and entirely built with the Cube instruction, without using any texture.

The fence built using this rather long and tedious method is less detailed than another one built using textures, but produces less “flashing” during the simulation. Objects created using textures with vertical repetitive elements, during the simulation, create an unattractive marble effect.

The object is expected to be used like repetitive element for instructions of type Rail, Wall or Dike and, if set on the running track, it will be set 3 meters to left of the axis of the track, but it can also be placed in other way as freeobject.

The piece of fence 25 meters long is composed with 3 different types of elements for a total of 122:

· N. 10 Support pillars - one every 2.5 meters

· N. 2 Longitudinal members 25 meters long

· N. 110 Vertical "sticks" (one every 20 cm between a pillar and another), leaving a light of 10 cm between a stick and another.

Built object

[image: image52.png]

Code of the CSV file (Fence.csv)

Look at attached files.

Example of CSV object (Tower in brick)

The object is set by default at coordinates 0,0,0 - namely on the running track - : so It will be properly set by the route builder using the freeobj instruction.

This example illustrates how to use a symmetric texture to cover surfaces created using the Cylinder instruction. This kind of objects will be visible from any direction.

Built object

[image: image53.png]

The tower has a diameter of 8 meters and a height of 25, then a stone parapet 1,5 m high. The following textures are used:

[image: image54.png]
Code of the CSV file (Torre1.csv)

	; Main body of the tower

CreateMeshBuilder

Cylinder,16,4,4,25

Translate,0,12,0 ; (0,5 m are "dug in")

LoadTexture,mattoni3.bmp

SetTextureCoordinates, 0,0 ,0

SetTextureCoordinates, 1,0 ,4

SetTextureCoordinates, 2,0.8,0

SetTextureCoordinates, 3,0.8,4

SetTextureCoordinates, 4,1.6,0

SetTextureCoordinates, 5,1.6,4

SetTextureCoordinates, 6,2.4,0

SetTextureCoordinates, 7,2.4,4

SetTextureCoordinates, 8,3.2,0

SetTextureCoordinates, 9,3.2,4

SetTextureCoordinates,10,4 ,0

SetTextureCoordinates,11,4 ,4

SetTextureCoordinates,12,4.8,0

SetTextureCoordinates,13,4.8,4

SetTextureCoordinates,14,5.6,0

SetTextureCoordinates,15,5.6,4

SetTextureCoordinates,16,6.4,0

SetTextureCoordinates,17,6.4,4

SetTextureCoordinates,18,5.6,0

SetTextureCoordinates,19,5.6,4

SetTextureCoordinates,20,4.8,0

SetTextureCoordinates,21,4.8,4

SetTextureCoordinates,22,4 ,0

SetTextureCoordinates,23,4 ,4

SetTextureCoordinates,24,3.2,0

SetTextureCoordinates,25,3.2,4

SetTextureCoordinates,26,2.4,0

SetTextureCoordinates,27,2.4,4

SetTextureCoordinates,28,1.6,0

SetTextureCoordinates,29,1.6,4

SetTextureCoordinates,30,0.8,0

SetTextureCoordinates,31,0.8,4
	Being a definite cylinder with 16 faces, 32 vertices from 0 to 31) are Automatically created by BVE.

N.B.: Vertices having even reference are upwards.

The texture is applied in the measure of 0.8 times in whidth for every side and 4 times in height for every face.

[image: image55.png]

	; Upper parapet D=m 8,6 – H=m 1,5

CreateMeshBuilder

Cylinder,16,4.3,4.3,1.5

Translate,0,25,0

LoadTexture,mattoni2.bmp

SetTextureCoordinates, 0,0 ,0

SetTextureCoordinates, 1,0 ,0.5

SetTextureCoordinates, 2,0.5,0

SetTextureCoordinates, 3,0.5,0.5

SetTextureCoordinates, 4,1 ,0

SetTextureCoordinates, 5,1 ,0.5

SetTextureCoordinates, 6,1.5,0

SetTextureCoordinates, 7,1.5,0.5

SetTextureCoordinates, 8,2 ,0

SetTextureCoordinates, 9,2 ,0.5

SetTextureCoordinates,10,2.5,0

SetTextureCoordinates,11,2.5,0.5

SetTextureCoordinates,12,3 ,0

SetTextureCoordinates,13,3 ,0.5

SetTextureCoordinates,14,3.5,0

SetTextureCoordinates,15,3.5,0.5

SetTextureCoordinates,16,4 ,0

SetTextureCoordinates,17,4 ,0.5

SetTextureCoordinates,18,3.5,0

SetTextureCoordinates,19,3.5,0.5

SetTextureCoordinates,20,3 ,0

SetTextureCoordinates,21,3 ,0.5

SetTextureCoordinates,22,2.5,0

SetTextureCoordinates,23,2.5,0.5

SetTextureCoordinates,24,2 ,0

SetTextureCoordinates,25,2 ,0.5

SetTextureCoordinates,26,1.5,0

SetTextureCoordinates,27,1.5,0.5

SetTextureCoordinates,28,1 ,0

SetTextureCoordinates,29,1 ,0.5

SetTextureCoordinates,30,0.5,0

SetTextureCoordinates,31,0.5,0.5
	How for the main body, the cylinder is defined with 16 faces, therefore also here BVE creates 32 vertexes (from 0 to 31) N. B. : summits with even numbers are upwards

The texture is applied in the measure of 0,5 times in width for every side and of 0,5 times in height for all the sides.

[image: image56.png]

Example of CSV object (Tank for water)

This example illustrates how to use asymmetric textures to cover surfaces created using Cube and Cylinder instructions. It’s also shown a method for a partial re-use of a texture created for other purposes.

The object is expected to be positioned on the running track: The axis of the tank will result moved 6 meters to the left of the axis of the track (ref. A).

The object can also be positioned to the right of the running track, by rotating it 180 degrees (ref. C), but it will not be able to be positioned like in ref. B where the last face of the solid (that one with the mirrored copy of the texture) is visible.

Built object

[image: image57.png]

The tank has a total height 15.25 meters, lightning conductor included, the diameter of the base is 4 meters, while that utmost is 4,4.

Following textures are used:

[image: image58.png]
Code of the CSV file (SerbAcqua. CSV)

	CreateMeshBuilder ; base

Cylinder,12,2,2,0.4

Translate,-6,0,0

SetColor,150,150,150
	[image: image59.png]

	CreateMeshBuilder ; carrying structure

Cylinder,12,1.5,1.5,7.8

Translate,-6,4.1,0

SetColor,255,255,170
	[image: image60.png]

	CreateMeshBuilder ; ring on structure

Cylinder,12,1.6,1.6,0.2

Translate,-6,7,0

SetColor,200,200,200

CreateMeshBuilder ; wainscot

Cylinder,12,1.51,1.51,1

Translate,-6,0.5,0

SetColor,150,150,150
	[image: image61.png]

	CreateMeshBuilder ; upper ring

Cylinder,12,2.1,2.1,0.2

Translate,-6,12.1,0

SetColor,200,200,200

CreateMeshBuilder ; lower ring

Cylinder,12,2.2,2.2,0.2

Translate,-6,8.1,0

SetColor,200,200,200
	[image: image62.png]

	CreateMeshBuilder ; Main body

Cylinder,12,2,2,4

Rotate,0,1,0,-195

Translate,-6,10.1,0

LoadTexture,logofs2.bmp

SetTextureCoordinates,0,0,0

SetTextureCoordinates,1,0,1

SetTextureCoordinates,2,0.1,0

SetTextureCoordinates,3,0.1,1

SetTextureCoordinates,4,0.2,0

SetTextureCoordinates,5,0.2,1

SetTextureCoordinates,6,0.3,0

SetTextureCoordinates,7,0.3,1

SetTextureCoordinates,8,0.4,0

SetTextureCoordinates,9,0.4,1

SetTextureCoordinates,10,0.5,0

SetTextureCoordinates,11,0.5,1

SetTextureCoordinates,12,0.5,0

SetTextureCoordinates,13,0.5,1

SetTextureCoordinates,14,0.6,0

SetTextureCoordinates,15,0.6,1

SetTextureCoordinates,16,0.7,0

SetTextureCoordinates,17,0.7,1

SetTextureCoordinates,18,0.8,0

SetTextureCoordinates,19,0.8,1

SetTextureCoordinates,20,0.9,0

SetTextureCoordinates,21,0.9,1

SetTextureCoordinates,22,1,0

SetTextureCoordinates,23,1,1
	To note how the texture is increased from 0 to 1 in width for 1/10 of the total on every face (while it’s applied to full height for all the faces).

Since the solid has 12 faces, the face n.12 (vertexes 23,22,0,1), that contains the whole texture rotated and mirrored, is anomalous, but it’s hidden from the counterclockwise rotation of 195 degrees of the entire body
[image: image63.png]

	CreateMeshBuilder ; cover

Cylinder,12,0.4,2.11,0.7

Translate,-6,12.45,0

SetColor,128,128,128
	[image: image64.png]

	CreateMeshBuilder ; Aerator

Cube,0.4

LoadTexture,aeratore.bmp

SetTextureCoordinates,3,0,0

SetTextureCoordinates,2,0,1

SetTextureCoordinates,0,1,0

SetTextureCoordinates,1,1,1

SetTextureCoordinates,4,2,0

SetTextureCoordinates,5,2,1

SetTextureCoordinates,7,1,0

SetTextureCoordinates,6,1,1

Translate,-6,13.15,0
	No problems with symmetric textures on a cube!

[image: image65.png]

	CreateMeshBuilder ; lightning conductor

Cylinder,3,0.05,0.05,1.5

Translate,-6,14.5,0

SetColor,128,128,128

CreateMeshBuilder ; Aerator roof

Cylinder,12,0.1,0.7,0.4

Translate,-6,13.8,0

SetColor,128,128,128
	[image: image66.png]

	CreateMeshBuilder ; door

Cube,0.15,1.25,0.6

LoadTexture,aeratore.bmp

SetTextureCoordinates,0, 0.1, 0.06

SetTextureCoordinates,4, 0.9, 0.06

SetTextureCoordinates,5, 0.9, 0.85

SetTextureCoordinates,1, 0.1, 0.85

SetTextureCoordinates,7, 1.1, 0.06

SetTextureCoordinates,6, 1.1, 0.85

Translate,-4.62,1.4,0
	Note how the already used texture is now distorted to imitate a door with its doorpost.

[image: image67.png]

Guide to Building Objects for the BVE Simulator by Luigi Cartello – revised by John Whipp - Page 1 of 33

